走进不科学 第20章

作者:新手钓鱼人

  虽然这个展开式对于小牛来说毫无难度,甚至可以算是二项式展开的基础操作。

  但是,这还是头一次有人如此直观的将开方数用图形给表达出来!

  更关键的是,杨辉三角第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

  这对于小牛正在进行的二项式后续推导,无疑是个巨大的助力!

  但是……

  小牛的眉头又逐渐皱了起来:

  杨辉三角的出现可以说给他打开了一个新思路,但对于他现在所卡顿的问题,也就是(P+PQ)m/n的展开却并没有多大帮助。

  因为杨辉三角涉及到的是系数问题,而小牛头疼的却是指数问题。

  现在的小牛就像是一位骑行的老司机。

  拐过一个山道时忽然发现前方百米过后一马平川,景色壮美,但面前十多米处却有一个巨大的落石堆挡路。

  而就在小牛纠结之时,徐云又缓缓说了一句话:

  “对了,牛顿先生,韩立爵士对于杨辉三角也有所研究。

  后来他发现二项式的指数似乎并不一定需要是整数,分数甚至负数似乎也是可行的。”

  “负数的论证方法他没有说明,但却留下了分数的论证方法。”

  “他将其称为……”

  “韩立展开!”

  ……

第25章 韩·数学鬼才·立

  屋子里,徐云正在侃侃而谈:

  “牛顿先生,韩立爵士计算发现,二项式定理中指数为分数时,可以用e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……来计算。”

  说着徐云拿起笔,在纸上写下了一行字:

  当n=0时,e^x>1。

  “牛顿先生,这里是从x^0开始的,用0作为起点讨论比较方便,您可以理解吧?”

  小牛点了点头,示意自己明白。

  随后徐云继续写道:

  假设当n=k时结论成立,即e^x>1+x/1!+x^2/2!+x^3/3!+……+x^k/k!(x>0)

  则e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^k/k!]>0

  那么当n=k+1时,令函数f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)

  接着徐云在f(k+1)上画了个圈,问道:

  “牛顿先生,您对导数有了解么?”

  小牛继续点了点头,言简意赅的蹦出两个字:

  “了解。”

  学过数学的朋友应该都知道。

  导数和积分是微积分最重要的组成部分,而导数又是微分积分的基础。

  眼下已经时值1665年末,小牛对于导数的认知其实已经到了一个比较深奥的地步了。

  在求导方面,小牛的介入点是瞬时速度。

  速度=路程/时间,这是小学生都知道的公式,但瞬时速度怎么办?

  比如说知道路程s=t^2,那么t=2的时候,瞬时速度v是多少呢?

  数学家的思维,就是将没学过的问题转化成学过的问题。

  于是牛顿想了一个很聪明的办法:

  取一个”很短”的时间段△t,先算算t=2到t=2+△t这个时间段内,平均速度是多少。

  v=s/t=(4△t+△t^2)/△t=4+△t。

  当△t越来越小,2+△t就越来越接近2,时间段就越来越窄。

  △t越来越接近0时,那么平均速度就越来越接近瞬时速度。

  如果△t小到了0,平均速度4+△t就变成了瞬时速度4。

  当然了。

  后来贝克莱发现了这个方法的一些逻辑问题,也就是△t到底是不是0。

  如果是0,那么计算速度的时候怎么能用△t做分母呢?鲜为人……咳咳,小学生也知道0不能做除数。

  到如果不是0,4+△t就永远变不成4,平均速度永远变不成瞬时速度。

  按照现代微积分的观念,贝克莱是在质疑lim△t→0是否等价于△t=0。

  这个问题的本质实际上是在对初生微积分的一种拷问,用“无限细分”这种运动、模糊的词语来定义精准的数学,真的合适吗?

  贝克莱由此引发的一系列讨论,便是赫赫有名的第二次数学危机。

  甚至有些悲观党宣称数理大厦要坍塌了,我们的世界都是虚假的——然后这些货真的就跳楼了,在奥地利还留有他们的遗像,某个扑街钓鱼佬曾经有幸参观过一次,跟七个小矮人似的,也不知道是用来被人瞻仰还是鞭尸的。

  这件事一直到要柯西和魏尔斯特拉斯两人的出现,才会彻底有了解释与定论,并且真正定义了后世很多同学挂的那棵树。

  但那是后来的事情,在小牛的这个年代,新生数学的实用性是放在首位的,因此严格化就相对被忽略了。

  这个时代的很多人都是一边利用数学工具做研究,一边用得出来的结果对工具进行改良优化。

  偶尔还会出现一些倒霉蛋算着算着,忽然发现自己这辈子的研究其实错了的情况。

  总而言之。

  在如今这个时间点,小牛对于求导还是比较熟悉的,只不过还没有归纳出系统的理论而已。

  徐云见状又写到:

  对f(k+1)求导,可得f(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+……+x^k/k!

  由假设知f(k+1)'>0

  那么当x=0时。

  f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0

  所以当x>0时。

  因为导数大于0,所以f(x)>f(0)=0

  所以当n=k+1时f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)成立!

  最后徐云写到:

  综上所属,对任意的n有:

  e^x>1+x/1!+x^2/2!+x^3/3!+……+x^n/n!(x>0)

  论述完毕,徐云放下钢笔,看向小牛。

  只见此时此刻。

  这位后世物理学的祖师爷正瞪大着那一双牛眼,死死地盯着面前的这张草稿纸。

  诚然。

  以目前小牛的研究进度,还不太好理解切线与面积的真正内在含义。

  但了解数学的人都知道,广义二项式定理其实就是复变函数的泰勒级数的特殊情形。

  这个级数与二项式定理是兼容的,系数符号也是与组合符号兼容的。

  所以二项式定理可以由自然数幂扩充至复数幂,组合定义也可以由自然数扩充至复数。

  只不过徐云在这里留了一手,没有告知小牛n为负数的时候就是无穷级数这件事。

  因为按照正常的历史线,无穷小量可是出自小牛之手,推导的过程还是交给他本人就好了。

  就这样过了几分钟,小牛方才回过神。

  只见他直接无视了身边的徐云,一个身位窜回座位,飞快的开始演算了起来。

  看着全身心投入计算的小牛,徐云也不生气,毕竟这位祖师爷就是这种脾气,可能也就在威廉·艾斯库的面前会相对好点了。

  沙沙沙——

  很快。

  笔尖与稿纸接触的声音响起,一道道公式被飞快列出。

  徐云见状思索片刻,转身离开了屋子。

  随意在墙角找了个位置,抬头看起了云卷云舒。

  就这样,两个小时一转而过。

  就在徐云盘算着自己下一步该如何落子的时候,木屋门忽然被人从中推开,小牛一脸激动的从内中窜了出来。

  只见他的眼中布满了血丝,用力的朝徐云挥了挥手中的稿纸:

  “肥鱼,负数、我推出了负数!一切都搞清楚了!

  二项式指数不用去管它是正数还是负数,是整数还是分数,组合数对所有条件都成立!

  杨辉三角,对,下一步就是研究杨辉三角!”

  也不知道是不是太过激动的缘故,小牛压根没注意到,自己的假发都被震落到了地上。

  看着满脸红光的小牛,徐云心中也不由浮现出了一丝改变历史的振奋感。

  按照正常轨迹。

  小牛要等到明年一月份收到一封约翰·提斯里波蒂的信件后,才会开窍般的攻克一系列的疑点难点。