走进不科学 第850章

作者:新手钓鱼人

  即便是已经停止取数的燕京正负电子对撞机,精细范围也就2-5GeV。

  早些年华夏曾经计划投资建立一台环形正负电子对撞机,也就是CEPC,那台的量级倒是足够。

  但CEPC最终在十三五阶段被否了,5票高能赞成,5票非高能领域反对,1票政府代表反对。

  虽然目前高能所拿到了前期预研资金,预备十四五再争取,但显然不可能在今天的发布会现场就直接投入使用——平行世界还差不多呢。

  除了CEPC外。

  燕京方面还有一个6GeV的高能光源在建设,庐州也有一个2.2GeV的低能区光源处于拟建中。

  换而言之。

  科院组的数据如果要进行验证,肯定要寻求其他机构帮助。

  可一旦11.4514GeV的那颗粒子真的被发现,又有多少机构愿意帮科院去验证呢?

  就在潘院士有些迟疑之际。

  刚刚被他一把拉到身边的徐云忽然又靠近了他些许,低声说道:

  “老师,我有件事想和您说一声。”

  潘院士顿时一怔。

  随后他的目光飞速扫了眼摄像机,确定镜头没有锁定自己后,方才对徐云道:

  “什么事?”

  “11.4514GeV的那颗粒子……应该不存在。”

  “……”

  潘院士的脸色没有太大变化,不过自然下垂在身侧的左手却悄然一握紧:

  “怎么说?”

  “空间角分布群SU3的数值不对,自旋1/2混合后的4个质量本征态保证它一定要是稳定粒子,那么它的SU3数绝不可能是-1,另外就是……”

  徐云深知时间有限,言简意赅的报出了几组数字。

  潘院士再次一愣。

  徐云的这番话在行外人听起来可能有点没头没尾,但对于潘院士这种级别的大佬来说,却显得清晰无比。

  早先提及过。

  那颗冥王星粒子之所以能被发现,就是因为它对盘古粒子产生了一些影响,一如冥王星对于天王星一般。

  也就是二者在某些方面有着关联,最终被威腾给敏锐的发现了。

  这个关联可以反应在各类数值上,空间角分布群SU3就是其中之一。

  冥王星粒子和盘古粒子必然都是稳定粒子,盘古粒子的SU3是-1,那么冥王星粒子必然不可能是这个数值。

  这个道理其实很简单,但还是之前的那句话——今天大佬们需要考虑的地方太多了,不可能把每个方面都完全考虑到。

  但徐云却不一样。

  他的视野是被加持过的,能够看到一些被人忽略的视野盲区,这也是他今天最大的优势。

  当然了。

  潘院士并不了解徐云请神的事儿,但他却能分辨出徐云所说的情况是真是假。

  想到这里。

  潘院士心脏的跳动速度,不由加快了几分。

  他不愿意接受威腾建议的原因主要还是担心11.4514GeV如果先进行验证,那么铃木厚人等人恐怕可以拿检测报告来搞事。

  粒子真的存在就别说了,科院的压力会一下骤增。

  而即便没找到那颗粒子,铃木厚人他们说不定也会拿某个区间信号来说事儿,以此宣称粒子‘可能存在’。

  但如果11.4514GeV的粒子完全是假的……

  那么科院组排后的顺序,反而会变得有利起来。

  毕竟“不存在”和“找不到”,这是两个概念。

  在粒子物理中。

  假设一颗粒子真的存在,那么即便你一时半会儿找不到它,多多少少也都会有一些可以被拿来参考的信号。

  例如希格斯粒子。

  这颗粒子在被正式发现之前,CERN曾经累计捕捉到过30多个信号波包,它也是让CREN一直坚持下去的理由之一。

  但如果一颗粒子完全不存在……

  那么别说信号了,一丁点儿凸起你都找不到。

  届时铃木厚人想洗地,都找不到合适的洗白点。

  与此同时。

  徐云和潘院士的交流内容,同样通过耳返传递到了后台的侯星远处。

  后台方面的专家在个人能力上或许和潘院士有所差距,但组成的团队实力却只高不低。

  因此很快。

  潘院士的耳返之中,便传来了侯星远的答复:

  “小潘,答应威腾的方案。”

  潘院士不动声色的敲击了两下耳返,示意自己收到了消息。

  随后他又转过头,对威腾说道:

  “没问题,威腾教授,我们接受您的方案。”

  威腾见状,心头隐隐一松。

  科院愿意让步就好。

  接着他思索片刻,指了指此前直播的大屏幕:

  “潘先生,接下来恐怕还得请中科院帮个忙,把信号和画面对接过来。”

  潘院士爽利的点点头:

  “OK。”

  在科院做出了决定后,剩下的事情就很简单了。

  铃木厚人、希格斯、特夫夫特以及其他几位机构的负责人凑到了一起,很快决定出了进行粒子检测的机构名单。

  被选出的机构一共有七家,分别是:

  第一家是费米国家加速器实验室,缩写FNAL。

  它的加速器直径有1.2英里,可以把质子加速到980GeV。

  这是目前人类历史上能量第二高的对撞机,第五种夸克底夸克和第六种夸克顶夸克的发现都出自于此。

  第二家是斯坦福加速器中心SLAC。

  长度3.2KM,粒子能级15GeV。

  成就有τ子的发现,第四种夸克粲夸克的发现,质子及中子内部的夸克结构。

  第三家是霓虹高能加速器研究机构,KEK,使用的对撞设备是J-PARC。

  代表成果有B介子的电荷-宇称不守恒。

  第四家是海对面的布鲁克海文国家实验室,简称BNL。

  第四种夸克粲夸克的发现,高能核物理的相关发现都出自于此,李政道、杨老和丁肇中先生都曾经在此工作。

  第五家是德国电子同步加速器研究所,简称DESY。

  第六家是毛熊科学院布德克尔核物理研究所,简称BINP,等离子体物理目前的绝对前端机构。

  第七家则是LHC,也就是CERN旗下的大型强子对撞机。

  而在整个确定机构名单的过程中,还出了个小插曲。

  那就是CERN的负责人卡洛·鲁比亚一直没怎么露面,最后还是由希格斯出面做的协商。

  这次对撞使用的依旧是铅离子,也就是验证盘古粒子使用的相同离子束,省去了一大笔的筹备时间。

  半个小时后。

  各大机构便传来了回复:

  设备已经准备完毕了。

  “潘院士。”

  随后一位工作人员快步来到潘院士身边,把一份文件递到了他面前:

  “这是七家机构的实验参数,请你过目。”

  潘院士朝他道了声谢,接过文件看了起来。

  结果看着看着,他便忍不住眉头一掀:

  “每一个束流设计1270个团簇,啧啧,J-PARC这可是下了血本呐。”

  他身边的工作人员闻言,脸上也露出了一丝愤愤:

  “小日子不就这样么,之前验证盘古粒子的时候还说最高只能300个团簇呢,真tmd不要脸!”

  潘院士朝他笑了笑,没有接话。

  基本粒子在微观尺度下的体积很小,大概只能在10^-15……10^-16的空间尺度才能发生碰撞。

  但在真正的对撞机中,承载加速粒子的真空管直径在厘米量级,基本上是不可能让它们相遇的——它太空旷了。

  所以在对撞过程中呢。

  加速器要先把粒子‘压缩’成离子束,然后按照严格的时间间隔,从次级加速器注入到主加速器管道中。

  每一团这样的粒子,就叫团簇。

  一条粒子束中团簇的密度越高,碰撞的周期就越短,反应就越剧烈。