走进不科学 第515章

作者:新手钓鱼人

  高斯见说摆了摆手,意思就是随你的便。

  得到高斯的允诺后。

  徐云郑重的将这卷手稿拿到了书桌边,小心的解封了起来。

  绑缚手稿的道具是一根红丝线,徐云拿住丝线一头,像是解鞋带似的一拉。

  咻——

  手稿瞬间展开。

  这份手稿意外的有些薄,大概就一两张的模样。

  徐云依旧是戴着手套将其拿起,认真的看了起来。

  手稿的开头记着几个数字,分别是:

  220/284、2924/2620、17296/18416、9437056/9363584……

  这几个数字没什么特别的,都是前人所计算出来的亲和数。

  接着就是欧拉归纳出来的公式。

  不过当徐云继续往下扫了几眼,他的呼吸便骤然停滞了几秒钟。

  只见手稿的下半部,赫然写着几个数字:

  5564/5020

  6368/6232

  10856/10744

  14595/12285

  18416/17296

  ……

  1000452085744/1023608366096

  1001583011750/1019368284250……

  最后一组数字的末尾可以看到一个清晰的黑色小点,显然是钢笔笔尖留下的痕迹。

  而在这组数字下方,还可以看到一道公式:

  σ(z)=σ(x·y)=1+[σ(x)-1]+[σ(y)-1]+[σ(x)-1][σ(y)-1]=1+σ(x)+σ(y)-2+σ(x)σ(y)-σ(x)-σ(y)+1=σ(x)σ(y)

  D(x)=x(1+12+13+……+1x2)≈x[ln(x/2+1)+r]≈x(lnx-0.116)。

  另外在公式的右侧,还存在着几个龙飞凤舞的字母。

  翻译成汉字便是:

  【太简单不算了,无聊死个人】。

  “……”

  徐云无语良久,随后抬起头看向了高斯。

  高斯眨了眨眼:

  “你瞅啥?”

  徐云朝他轻轻扬了扬手中的手稿,对高斯说道:

  “高斯教授,您这份手稿末尾的那句话……”

  “哦,你说那个啊。”

  高斯回忆了几秒钟,很快想起了徐云说的内容,便解释道:

  “字面意思,当初我在收到约瑟夫寄来的欧拉手稿后花了两天……应该是两天时间吧,要不就三天——反正很快就算出了上百组的亲和数。”

  “后来我原本想归纳出一道对应的公式,不过算了一半感觉太简单了,就把它放到了一边。”

  “哦对了,波恩哈德在三年前也算出来了这个公式,他的评价是有手就行。”

  徐云:

  “……”

  高斯口中的约瑟夫就是约瑟夫·路易斯·拉格朗日,也是欧拉的爱徒,同样是一位青史留名的数学家。

  他与欧拉的关系,差不多就相当于黎曼和高斯一般。

  欧拉——拉格朗日——柯西,以及高斯——狄利克雷——黎曼,这算是近代数学很有名的两个传承派系。

  另外在历史上。

  拉格朗日也是欧拉手稿的继承者之一,他会寄信给高斯倒也正常。

  只是……

  高斯的这番话,未免也太tmd打击人了吧?

  要知道。

  哪怕是徐云穿越来的2022年,数学界也依旧没有一个统一的亲和数公式。

  无论是欧拉还是叶维勒,他们的公式都有一定的失误率——例如欧拉便漏算了1184/1210这组数,直到1867年才由意大利的一个神童计算出来。

  这个神童的名字叫做帕格尼尼,每次想到这个名字,徐云都会歪楼到猪柳蛋帕尼尼……

  后世筛选亲和数靠的主要是约数和比较,也就是符合条件的输出YES,反之便是NO。

  说难听点。

  后世筛选的实质,其实就是穷举法。

  结果在1850年这个时代,高斯和黎曼居然都推导出了亲和数的标准公式?

  不过考虑到这二位在历史上的成就,加之欧拉已经推导出了部分亲和数公式……

  好吧,他们能做到这一步似乎也没啥好意外的。

  与此同时。

  这也算是解开了一桩数学史上的谜题:

  在计算机发明之前,几乎每个数学流派都会在亲和数方面投入大量的精力和时间。

  但唯独高斯的哥廷根数学派系除外。

  无论是高斯本人,还是黎曼、雅可比、戴德金或者狄利克雷,他们全都没有留下过任何研究亲和数的作品或者记录。

  这其实是一种很奇怪的现象,好比后世搞量子理论的大佬不去研究微扰论一样违和。

  如今随着高斯的这番话,一切总算是真相大白了:

  合着他们早就破解了亲和数的谜团,觉得太简单才没去管……

  随后高斯看了眼有些意犹未尽的徐云。

  沉吟片刻,主动来到皮箱边翻找了几下。

  很快。

  他便从中取出了另一册稍厚一些的手稿,递给了徐云,说道:

  “罗峰,既然你对亲和数有兴趣,这卷手稿或许会符合你的口味。”

第307章 高斯的宝藏(下)

  “……”

  书房内。

  看着高斯递到面前的这份全新手稿,徐云的脸上不由冒出了一股好奇。

  这里头的内容会是什么?

  要知道。

  在数学领域里,亲和数属于数论的一个分支。

  和它能搭上边的‘亲戚’如果真要一个数,符合条件的例子实在是太多太多了。

  比如素数、等和数,孤立数,公和数等等一大堆都是……

  甚至你硬要扯的话。

  非欧几何都能和数论扯上关系:

  因为非欧几何也是一个一阶谓词逻辑与初等数论的形式系统,符合哥德尔不完备定理。

  因此单靠高斯的介绍,徐云确实猜不出这份手稿的内容,只能亲自观阅才知道了。

  随后他伸出双手,小心的接过手稿。

  接着他又想到了什么,停下动作,对高斯问道:

  “高斯教授,这份手稿是您给我的,看完算……”

  结果徐云话未说完,高斯便无情的打消了他的念头:

  “当然要记入五卷之一。”

  徐云只能耸耸肩。

  好吧,卡逻辑bug失败。

  不过总体上问题不大,毕竟这五卷手稿的机会本身便是个意外之喜。

  随后他又打量了一番手稿外部,发现手稿只被一根红丝带绑着,没有看到类似亲和数那种写有大致内容的封条。

  见此情形。

  徐云顿时目光一凝,心中的重视度又提高了几分:

  不通过标题索引就能找出来的手稿,说明它在高斯心中的地位一定不一般,至少不需要靠着封条来进行记忆提示。

  想到这里。