走进不科学 第448章

作者:新手钓鱼人

  也就是当气压计中水银振荡时,在托里拆利真空部位会发出闪光。

  可惜法拉第当时能制作的真空管只有7%个大气压,因此他只能无奈放弃这个实验——这也就是此前提及过的法拉第暗区的由来。

  随后徐云没再接话,低头又在纸上画了几分钟。

  很快。

  一个结构更为复杂的长管出现了:

  这根长管前粗后窄,尾部连着一个黑色的区域——徐云在一旁的备注是白金电极,中通水银,外部则缠绕着鲁姆科夫线圈。

  当然了。

  徐云印象中鲁姆科夫线圈应该就出现在1850年前后,但不确定是在具体几月份。

  所以为了避免一些没必要的麻烦,他没有标注鲁姆科夫线圈的名字,同时还对一些外阻进行了修改。

  看到这里。

  想必有部分同学已经猜出来了。

  没错。

  徐云这次拿出来的,正是加强的盖斯勒管!

  1850年能够做到的真空度大概是千分之六大气压,也就是比法拉第当初的7%精密十倍左右。

  但实话实说。

  这种真空度在实验上还是有些不够看,很容易出现观测上的误差。

  所以在仔细思考过后,徐云此遭直接拿出了一个大杀器:

  由普吕克的学生希托夫改造出的盖斯勒管。

  这根盖斯勒管的魔改版本可以达到十万分之一个大气压,也就是比法拉第当初精细600倍!

  虽然与后世大型强子对撞机动辄负12负13次方的真空度相比依旧是个弟弟,但在这年头去也足够法拉第等人鼓捣了。

  随后徐云抬起头,指着示意图对法拉第问道:

  “法拉第先生,这根导管的原理您可以理解吗?”

  法拉第上前看了几眼,顿时眼前一亮:

  “好思路,铂电极加上水银抽取,从上方排出空气……哎呀,我怎么就没想到呢!”

  徐云看了法拉第一眼,没有说话。

  物理学……或者说理科实验,有些时候就是这么现实。

  哪怕你是业内大佬,历史上能够排到前几的某某理论奠基人,有的问题想不到就是想不到。

  法拉第其实还算好的了。

  虽然从后世角度看来,他没发现电磁波是件憾事,但法拉第本人对此是没有概念的。

  从自身角度来说。

  他的人生可以算是功德圆满,不留遗憾。

  有些倒霉蛋那才是真惨,可能研究了一辈子的问题被二十多岁的小年轻给破解了出来,甚至可能死前三个月突然知道了自己毕生的研究方向都是错的……

  这也是理科残酷的一面吧。

  随后徐云顿了顿,又继续说道:

  “肥鱼先祖在设计出这根管子后,由于断章太多被一些读者找上了门,只能带着妻子蒂法和爱丽丝匆匆避难。”

  “因此一直以来,这根真空管都只是个设计图——其实我们这些后人倒也有尝试制作的想法,可惜家道中落,所以一直没有机会进行相关实验。”

  法拉第闻言,亦是深有同感的点了点头。

  同样作为一名码字党,他也没少遇到上门寄刀片的读者。

  不就是五六年才更新一章嘛,有啥好催的呢?

  一章五千多字呢,算上去每天要写三四个字之多……

  随后徐云正了正色,又说道:

  “法拉第先生,按照肥鱼先祖的设计,这根真空管应该可以观测到比较明显的现象。”

  “接着只要在玻璃管中放上小风车,让电流衍生物打到风车上,风车若是会转动,就说明它具备动量。”

  “同时还可以将手深入其中,若是能有温度,就说明它有热能。”

  法拉第一边听一边点头,丝毫没有察觉徐云最后那句话可能产生什么样的后果。

  过了一会儿,他将全部思路都吃透了,便又问道:

  “流程我记下了,不过罗峰同学,这似乎和你说的验证电荷有些出入吧?”

  徐云看了他一眼,摇摇头,说道:

  “您错了,法拉第先生,您难道没有发现一件事吗?”

  法拉第微微一怔:

  “什么事?”

  徐云指了指示意图上的导管,说道

  “按照肥鱼先祖的想法,那些电流的衍生光线,就是带电粒子的粒子流啊……”

  法拉第和韦伯闻言呆滞片刻,旋即瞳孔骤缩!

  如果此时有显微镜在场,可以发现他们裸露在外的皮肤上,正有一粒粒鸡皮疙瘩在缓缓冒出。

  屋内明明有壁炉供暖,氛围却犹如冰点。

  过了好一会儿。

  法拉第的眼睛才动了动。

  只见他转过头,看向徐云,一字一顿的道:

  “……电磁波?”

  徐云重重点了点头:

  “没错。”

  随后看着一脸震惊的法拉第,徐云又说道:

  “法拉第先生,想要验证荧光的带电属性其实很简单,只要去验证它们在电场磁场中会不会发生偏转就可以了。”

  “我们可以同时施加磁场和电场,使磁场力和电场力相互抵消,令它可以做直线运动,从而求出初始速度。”

  “接着在得到初始速度后,撤掉电场,仅保留磁场。”

  “若光线发生偏转,只要测出射出磁场时的角度,就可以计算出其中粒子的荷质比。”

  法拉第沉默许久,喉咙里隐隐发出了一阵‘嗬嗬’的不明声。

  过了许久。

  他才面色复杂的呼出了一口气浊气,心中感慨万千。

  原来自己曾经离电磁波和电荷,竟然只有一线之隔啊……

  要知道。

  带电粒子会在电场磁场中会偏转,这个概念正是由他本人发现的。

  可惜当时自己为了研究地磁垂直分量的问题,放弃了继续提高真空管精度的想法。

  从而与一个如此重要的成就失之交臂。

  在他对面。

  看着面色阴晴不定的法拉第,徐云的表情有一些唏嘘。

  选修过物理史的读者应该都知道。

  法拉第在1838年研究辉光效应的时候,其实是有观测过真空管在电磁场中的情况的。

  但由于真空度问题,荧光最终没有偏转。

  这里用另一个例子解释可能更好理解一点:

  荧光就好像是一队士兵,听到命令后就要立刻前进十米。

  要是在旷野……也就是完全真空的环境中,这队士兵自然会轻松完成命令。

  但若是他们身处人海,每个听到命令的士兵都要推开身边的人群才能向前进,那就非常麻烦了。

  人群密度不高的话可能只是有些困难。

  但人群一旦特别密集,士兵们别说前进了,甚至只能被人群裹挟着漫无目的地四处乱走。

  而真空管中的空气分子就是人群,电场就是荧光偏转的命令。

  实验用的真空管,就相当于不同人群密度的条件。

  法拉第当时7%真空度的真空管依旧相当于闹市,所以荧光并未有波动。

  加强的盖斯勒管则可以达到万分之一真空度,荧光偏转起来就非常容易了。

  更关键的是……

  与原本历史不同。

  在今天之前,徐云已经用光电效应证明了电磁波的存在。

  因此对面电流衍生体这种无色的‘光线’,徐云只是轻轻一个提点,法拉第便想到了它的本质。

  这由电流衍生出来的‘光’既然是电磁波,那么它就肯定具备粒子性。

  具备粒子性,又能在电磁场下偏转……

  这不是带电电荷又是什么?

  当然了。

  后世的读者想必都很清楚。

  这种在真空管内发光的正是阴极射线,原本会在1858年由普吕克发现,由戈尔德施泰因命名。