走进不科学 第406章

作者:新手钓鱼人

  虽然早已知道无法与肥鱼先生相比,但他无论如何也没料到,自己与肥鱼先生的差距竟然会如此之大……

  这个肥鱼先生随手设计的实验,恐怕就足够现场众人回味一生了。

  更别提按照徐云的说法。

  这还只是肥鱼先生设计出的实验之一呢。

  不愧是能和牛顿爵士并列的人物啊……

  总而言之。

  事情到了这一步,接下来的事情就很简单了。

  这年头赫兹还没有提出频率单位……也就是赫兹的概念。

  但频谱这玩意儿早在小牛时期就被发明出来了,只是定义上还是比较靠近‘周期’而已。

  徐云设计的这个发生器相当与一个震荡偶极子,在发生期间会激起高频的震荡,感应线圈则会以每秒10-100的频率进行充电,产生的是一种阻尼震荡图。(我再试试能不能放到本章说,现在本章说的审核有点无语)

  知道匝数和功率,周期计算起来也就很简单了。

  因此很快。

  波长与震荡周期两个数值,同时摆到了法拉第等人的面前。

  法拉第凝视数值许久,最后拿起笔,开始了计算。

  电磁波的频率和波源振荡频率相同,波长则和介质的折射率有关。

  空气中的折射率虽然和真空不太一样,但对于1850年的众人来说,这个误差基本上可以忽略。

  唰唰唰——

  法拉第的笔尖沉稳而迅速的在纸上划过。

  数学不算很好的他面对眼下这种计算量,多多少少都会有些感到吃力。

  几分钟后。

  法拉第终于算好了最后一位数字。

  就在他准备轻舒一口气之际,眉头下意识的又是一皱。

  不知为何。

  他总觉得纸上的这个数字,似乎有些熟悉?

  眼见法拉第的表情有些迟疑,一旁的小麦有些忍不住了,这位对于知识的求知欲甚至堪比小牛来着。

  只见他虎头虎脑的凑上前看了几眼,忽然轻咦一声:

  “2.97969X10^8m/s,这不是……”

  “光速吗?!”

  ……

第260章 电磁波是光?

  电磁波的速度与光速近似。

  随着小麦这句话的说出。

  法拉第顿时为之一愣,旋即恍然的朝额头上一拍,发出了一道清脆的“啪”。

  原来如此……

  难怪自己感觉这个数字有些熟悉。

  2.97969X10^8m/s,这不就和之前测算出的光速相差无几吗?!

  可是……

  为什么会这样呢?

  要知道。

  在眼下这个时代,科学界对于机械波已经有了比较明确的认知:

  它是由扰动的传播所导致的在物质中动量和能量的传输。

  同时呢,机械波又可以分成纵波与横波两类。

  例如沿弦的波和声波等等,当然还有混合波。

  而波与波之间除了类别不同,传播的速度也是各有差异。

  例如声波的速度是每秒340米,测出这个数值的人叫做德罕姆,是个英国人。

  他在1708年通过肉眼观测大炮,测出了在20摄氏度的情况下,声速大约在每秒343米左右。

  至于水中声速的测算者则是科拉顿。

  他在日内瓦——是地名的那个日内瓦哈,他在日内瓦湖上通过一个精密的小实验,计算出了水中声速为1435米/秒。

  另外还有弦波乃至光波,这些数值目前都已经有了测算方式与结果。

  在法拉第看来。

  电磁波源自电场和磁场,其中电场的震荡频率先天性的就处在一个高位。

  加上现象方面的对比,电磁波的波速自然不太可能是个低值。

  但这个‘不太可能是个低值’的意思,顶了天就是一秒几十公里,比约翰·米歇尔在1760年猜测的地震波速度快一些罢了。

  可眼下根据实测出来的结果,电磁波的速度居然接近光速?

  以法拉第……或者说在场每个大佬的眼界,都能意识到这个相同点代表着什么。

  物理学中这种量级的巧合基本上不存在,超高尺度上某些关键数值相近的物质,彼此之间必然有着某种关系。

  见法拉第沉默不语,一旁的焦耳犹豫片刻,问道:

  “罗峰同学,会不会是我们在测量环节上出现了误差?”

  徐云看了他一眼。

  作为后世来人,徐云对于焦耳的想法多少能有些理解。

  在能够冲击自己三观的现象面前,心中会产生怀疑实属正常。

  只见徐云轻轻摇了摇头,解释道:

  “焦耳先生,刚才的检测环节您也看到了,我们一共收集了不下五十组的节距数据。”

  “由此计算出来的数值虽然依旧可能存在偏差,但这种偏差至多导致小数点后几位的不同,在‘量级’这个概念上还是非常精确的。”

  “另外就是……”

  徐云一边说一边从桌上翻出了最早的那个经典波动方程,指着方程继续道:

  “我们其实可以从波动方程入手,从纯数学的角度对电磁波的速度进行一次计算。”

  法拉第等人闻言,连忙将视线转移到了方程上。

  过了几秒钟。

  一直没什么戏份的纽曼忽然打了个响指,拿着笔在μ0ε0上画了个圈:

  “对啊,我们可以从方程角度把波速给逆推出来,哎呀,早该想到这点的!”

  先前提及过。

  电场的波动方程是▽^2B=μ0ε0(a^2B/at^2)。

  磁场的波动方程是▽^2E=μ0ε0(a^2E/at^2)。

  对比一下电场和磁场的波动方程,你会发现它们是形式是一模一样的——只不过就是把E和B互换了一下而已。

  这说明二者存在的波在速度上完全一致,同时再对比一下经典波动方程的速度项,不难发现另一个情况:

  电磁波的速度,可以从电磁场的波动方程中逆推出来。

  也就是……

  V=1/√ ̄μ0ε0。

  其中μ0是绝对介电常数,数值为4π×10^-7m·kg/C^2。

  ε0则是真空介电常数,数值为8.854187818×10^-12C^2s^2/kg·m^3。

  其中前者的单位可以所写成N/A^2,后者则可以表示成F/m。

  只是按照正常历史。

  法拉也好,安培也罢。

  这些单位要到1881年的国际电学大会上,才会被正式做出定义。

  但和之前的旋度一样。

  1850年的科学界早就对这个概念有所认知了,只是表达形式上暂时还是C^2s^2/kg·m^3而已。

  就像电容量的单位库伦,它也是1881年的国际电学大会上定义的数值,但在此之前早都被用的烂大街了。

  1881年之所以会举行这么一场大会,主要还是因为美洲以及亚洲国家在这方面没有完备的体系,所以才用这么一场正式化的会议对单位进行了定性。

  其中亚洲的国家主要是指霓虹,与明治维新有关系,此处就不赘述了。

  顺便一提。

  那场会议上定义了七个电学计量单位,分别是:

  库伦、安培、伏特、欧姆、法拉、亨利和西门子。

  当然了。

  看到这里,可能有同学会问:

  以1850年的科技水平,到底是怎么在真空下测算出那些数据的呢?

  这其实和徐云上辈子写小说的时候,一个读者提出的‘1850年数值就可以那么精确了吗’有些类似。

  这两个问题的根本原因还是在于固有的认知壁垒——很多人以为1850年仿佛和现在是两个纪元,能算出10x10=100就很了不起了。