走进不科学 第401章

作者:新手钓鱼人

  如果合外力F不为零,那么物体就会有一个加速度a,它们之间的关系就由F=ma来定量描述。

  也就是说。

  如果我们知道一个物体的质量m,只要你能分析出它受到的合外力F。

  那么我们就可以根据小牛第二定律F=ma,计算出它的加速度a。

  知道加速度,就知道它接下来要怎么动了。

  随后徐云又在函数图像的某段上随意取了两个点。

  一个写上A,一个写上B,二者的弧度标注为了△l。

  写完后将它朝小麦面前一推:

  “麦克斯韦同学,你来分析一下这段区间收到的合外力试试?不考虑重力。”

  小麦闻言一愣,指了指自己,诧异道:

  “我?”

  徐云点了点头,心中微微一叹。

  今天他要做的事情对于法拉第、对于电磁学界、或者说大点对于整个人类的历史进程,都会有着极大的促进意义。

  但唯独对于小麦和赫兹二人而言,却未必是个好事。

  因为这代表着有些原本属于他们的贡献被抹去了。

  就像某天一个月薪4000的打工人忽然知道自己原本可能成为亿万富翁,结果有个重生者以‘人类共同发展’为由把属于你的机会给夺走了,你会作何感想?

  平心而论,有些不公平。

  所以在徐云的内心深处,他对小麦是有些愧疚感的。

  往后怎么补偿小麦另说,总之在眼下这个过程里,他能做的便是让小麦尽可能的进入这些大佬的视线里。

  当然了。

  小麦并不知道徐云内心的想法,此时他正拿着钢笔,刷刷刷的在纸上写着受力分析:

  “罗峰先生说不考虑重力,那么,就只要分析波段AB两端的张力T就行了。”

  “波段AB受到A点朝左下方的张力T和B点朝右上方的张力T,彼此对等。”

  “但波段的区域是弯曲的,因此两个T的方向并不相同。”

  “假设A点处张力的方向跟横轴夹角为θ,B点跟横轴的夹角就明显不一样了,记为θ+Δθ。”

  “因为波段上的点在波动时是上下运动,所以只需要考虑张力T在上下方向上的分量。”

  “B点处向上的张力为T·sin(θ+Δθ),A点向下的张力为T·sinθ,那么,整个AB段在竖直方向上受到的合力就等于这两个力相减……”

  很快。

  小麦在纸上写下了一个公式:

  F=T·sin(θ+Δθ)-T·sinθ。

  徐云满意的点了点头,又说道:

  “那么波的质量是多少呢?”

  “波的质量?”

  这一次。

  小麦的眉头微微皱了起来。

  如果假设波段单位长度的质量为μ,那么长度为Δl的波段的质量显然就是μ·Δl。

  但是,因为徐云所取的是非常小的一段区间。

  假设A点的横坐标为x,B点的横坐标为x+Δx。

  也就是说绳子AB在横坐标的投影长度为Δx。

  那么当所取的绳长非常短,波动非常小的时候,则可以近似用Δx代替Δl。

  这样绳子的质量就可以表示为……

  μ·Δx

  与此同时。

  一旁的基尔霍夫忽然想到了什么,瞳孔微微一缩,用有些干涩的英文说道:

  “等等……合外力和质量都已经确定了,如果再求出加速度……”

  听到基尔霍夫这番话。

  原本就不怎么喧闹的教室,忽然又静上了几分。

  对啊。

  不知不觉中,徐云已经推导出了合外力和质量!

  如果再推导出加速度……

  那么不就可以以牛二的形式,表达出波在经典体系下的方程了吗?

  想到这里。

  几位大佬纷纷拿出纸笔,尝试性的计算起了最后的加速度。

  说起加速度,首先就要说说它的概念:

  这个是用来衡量速度变化快慢的量。

  加速度嘛,肯定是速度加得越快,加速度的值就越大。

  比如我们经常可以听到的“我要加速啦”等等。

  假如一辆车第1秒的速度是2m/s,第2秒的速度是4m/s。

  那么它的加速度就是用速度的差(4-2=2)除以时间差(2-1=1),结果就是2m/s^2。

  再来回想一下,一辆车的速度是怎么求出来的?

  当然是用距离的差来除以时间差得出的数值。

  比如一辆车第1秒钟距离起点20米,第2秒钟距离起点50米。

  那么它的速度就是用距离的差(50-20=30)除以时间差(2-1=1),结果就是30m/s。

  不知道大家从这两个例子里发现了什么没有?

  没错!

  用距离的差除以时间差就得到了速度,再用速度的差除以时间差就得到了加速度,这两个过程都是除以时间差。

  那么……

  如果把这两个过程合到一块呢?

  那是不是就可以说:

  距离的差除以一次时间差,再除以一次时间差就可以得到加速度?

  当然了。

  这只是一种思路,严格意义上来说,这样表述并不是很准确,但是可以很方便的让大家理解这个思想。

  如果把距离看作关于时间的函数,那么对这个函数求一次导数:

  就是上面的距离差除以时间差,只不过趋于无穷小,就得到了速度的函数。

  对速度的函数再求一次导数,就得到了加速度的表示。

  鲜为人同学们懂不懂不知道,反正在场的这些大佬们很快便都想到了这一点。

  是的。

  之前所列的函数f(x,t)描述的内容,就是波段上某一点在不同时间t的位置!

  所以只要对对f(x,t)求两次关于时间的导数,自然就得到了这点的加速度a。

  因为函数f是关于x和t两个变量的函数,所以只能对时间的偏导af/at,再求一次偏导数就加个2上去。

  因此很快。

  包括法拉第在内,所有大佬们都先后写下了一个数值:

  加速度a=a^2f/at^2。

  而将这个数值与之前的合力与质量相结合,那么一个新的表达式便出现了:

  F=T·sin(θ+Δθ)-T·sinθ=μ·Δxa^2f/at^2。

  随后威廉·韦伯认真看了眼这个表达式,眉头微微皱了些许:

  “罗峰同学,这就是最终的表达式吗?我似乎感觉好像还能化简?”

  徐云点了点头:

  “当然可以。”

  F=T·sin(θ+Δθ)-T·sinθ=μ·Δxaa^2f/at^2。

  这是一个最原始的方程组,内容不太清晰,方程左边的东西看着太麻烦了。

  因此还需要对它进行一番改造。

  至于改造的思路在哪儿呢?

  当然是sinθ了。

  只见徐云拿起笔,在纸上画了个直角三角形。

  众所周知。

  正弦值sinθ等于对边c除以斜边a,正切值tanθ等于对边c除以邻边b。

  徐云又画了个夹角很小的直角三角形,角度估摸着只有几度:

  “但是一旦角度θ非常非常小,那么邻边b和斜边a就快要重合了。”

  “这时候我们是可以近似的认为a和b是相等的,也就是a≈b。”