走进不科学 第1349章

作者:新手钓鱼人

  没错。

  惊世骇俗。

  这便是小柴昌俊对于这篇论文的定义。

  毕竟他的主要研究方向正是基础粒子,对于这方面的认知要远高于常人。

  在小柴昌俊看来。

  这篇论文很可能在理论物理的历史上都占有一席之地,其中很多概念对于小柴昌俊本人的研究都带着明显的启发性。

  比如说论文中提到的标量玻色子和矢量玻色子。

  在看到这篇文章之前,理论物理学界一直有一个难以解释的难题:

  粒子整体对称性自发破缺之后会导致相应理论中出现3个Goldstone boson……也就是戈德斯通玻色子,并且还会出现一个非零的真空期望值。

  但问题是无质量的矢量场或者规范场只有两个横向分量,如果按照矢量场计算,实际中顶多就会出现两个戈德斯通玻色子而已。

  这个难题从最早出现到现在已有11年了,正式被视作一个课题讨论也有六七年了。

  结果没想的是。

  赵忠尧他们的这篇论文里居然引入了标量玻色子的概念,对这个问题作出了一个相当合理的解释。

  虽然这个解释是纯粹的数学推导步骤,但以小柴昌俊的能力自然不难判断出,这个推导过程的准确性无限接近于100%。

  “真是斯国一捏……”

  而就在小柴昌俊发出感叹的同时。

  一旁的汤川秀树却悄然皱起了眉头:

  “桥豆麻袋……这个数值好像有问题。”

第685章 铃木厚人:这个坑太小了,咱们把它挖大一点吧(上)

  “……?”

  此时此刻。

  办公室内。

  听到汤川秀树的这道疑惑声。

  一旁的小柴昌俊与朝永振一郎二人,不由同时看向了这位霓虹顶尖的理论物理大佬:

  “汤川桑,你发现什么问题了吗?是不是华夏人的论文哪里有什么错误?”

  二人的第一反应都是华夏的论文存在瑕疵,由此可见他们对于华夏到底有多么的不信任。

  不过汤川秀树紧蹙着眉头沉默了几秒钟,却缓缓摇了摇脑袋:

  “不,不是错漏,而是……这个模型似乎有些特殊。”

  小柴昌俊顿时一怔。

  特殊?

  这是啥意思?

  这两个字在物理学界……或者说论文点评的过程中可不算什么常见词儿。

  一般来说。

  物理学家在评价某篇论文的时候,通常只会有两种情况:

  要么会因为论文内容优质而表示【完美】、【精妙】之类的叹服和夸张。

  要么就是说某个论点【离谱】、【荒唐】或者【不知所云】。

  例如汤川秀树最早看的那篇《Nature》,他的评价就是内容离谱,质量对不上热度。

  可眼下面对华夏人的这篇论文,他居然说出了特殊这个词……

  想到这里。

  小柴昌俊忍不住咽了口唾沫,对汤川秀树问道:

  “汤川桑,很抱歉,恕我没有理解你的意思……”

  面对小柴昌俊这种霓虹物理界的后起之秀,汤川秀树的态度还是相对比较温和的,只见他将期刊往桌子前方挪了挪,说道:

  “小柴桑,你看看这里就明白了。”

  小柴昌俊乖乖探过了脑袋。

  汤川秀树所指的区域是论文的一处核心推导区,上头描述的是一个很新颖的思路:

  论文将局部规范不变性理论与自发对称性破缺的概念以某种特别方式连结在一起,让规范玻色子获得了质量。

  这个过程小柴昌俊之前也注意过,切入点堪称精妙。

  众所周知。

  有质量的矢量场不是规范不变的,所以一般写的拉氏量里不会出现AμAμ这样的项。

  而无质量粒子意味着其代表的相互作用的强度随着距离增加是多项式衰减,比如电磁力是1/r(长程),而有质量意味着e-mr/r(短程),其中m就是这个粒子对应的质量。

  一般来说。

  可以通过计算对应的实空间传播子的远程极限r→∞,最终得到上述对应关系。

  但是……

  由于时代与科技的局限性,眼下这个时期的物理学界还没有发现描述弱相互作用的矢量玻色子……也就是W±,Z玻色子。

  所以大多数推导的方向都是以拉氏量为复标量场和U(1)规范场进行耦合。

  其中最知名的耦合方式便是汤川秀树提出的汤川耦合,也就是带电费米子和规范场之间的相互作用。

  它在特定距离内有点像电磁学,超过该距离后会迅速减弱。

  弱相互作用的矢量玻色子和规范场之间的相互作用通过所谓的规范协变导数,这要更抽象一些。

  不过眼下的汤川耦合适用的情景相对有限,当它被扩增到自耦合比较小的某个状态的时候,它的拉格朗日量会具备反射对称性。

  用徐云后世的例子来解释就是……

  汤川耦合是一本硬核类的科幻小说,在【科幻】这个分类里头小有名气并且还有不少读者,风评也算是很高。

  但是一旦将【科幻】这个情景换成所有网络小说——比如说包括玄幻、仙侠、体育这类分类之后,很多其他分类的读者就有些看不下这种类型的作品了。

  很多人对于所谓的科幻嗤之以鼻,表示自己只爱看后宫文或者无敌文,只追求一个爽字。

  这里的玄幻、仙侠便是指弱力、电磁力的相关范畴,也就是汤川秀树的这个“作品”在其他分类因为相性不适被排斥了。

  不过……

  眼下汤川秀树在论文中所指的这个思路,却好像产生了一些变数。

  随后小柴昌俊认真看了几眼,甚至拿起笔在纸上计算了一会儿:

  “唔?0.98526……汤川桑,这个耦合参数我似乎在哪里见过?”

  汤川秀树同样摸了摸自己斑秃的大脑门儿,说道:

  “嗯,我也感觉有点熟悉,但想不起哪里见过这个数值了。”

  而就在汤川秀树和小柴昌俊有些卡壳的时候,一旁的朝永振一郎忽然想到了什么。

  只见他朝汤川秀树说了声私密马赛,快步走到一旁的椅子边,拿起个公文包翻动了起来。

  小半分钟后。

  朝永振一郎从中抽出了一叠报告,放在面前看了几秒钟,接着便是眼前一亮。

  随后他重新回到了汤川秀树等人身边,将报告递给了汤川秀树,语气透露着些许急促:

  “汤川桑,你看这个!”

  汤川秀树接过文件看了几眼,旋即便是瞳孔一缩。

  只见这份报告上记录的某个参数,赫然与他和小柴昌俊算出来的相差无几!

  这个参数只在小数点后五六位上存在着细微不同,这属于很正常的情况——毕竟他与小柴昌俊只是简单的进行了一次笔算,结果肯定做不到太过精确。

  更别说他们计算的数据只有一组,而实验报告却有多组对照和平均。

  对于他们这种顶尖的物理学家来说,这种参数只要看最前面几位,就很快能确定是相同性质的数值。

  随后汤川秀树将这叠文件重新翻回到了封面,看清上头内容后掀了掀眉毛:

  “电子中微子的拟合数据?”

  “没错。”

  朝永振一郎点了点头,指着文件解释道:

  “这是我们在年初对电子中微子进行的部分数据研究,准确来说是帝大牵头进行的一次南部模型的深入计算推导。”

  “其中电子中微子的不变质量谱在这个区间有一个小起伏,最后计算出来的耦合参数就是0.98左右……”

  “当时汤川桑你不在项目组内,不过这份报告你应该也过过眼,所以有一些模糊的印象。”

  汤川秀树闻言,眼中闪过了一道思色。

  霓虹的最高大学学府群叫做帝大,一共由七所大学组成,分别是东京大学、京都大学、东北大学、大阪大学、名古屋大学、九州大学以及北海道大学。

  这种称呼有点类似后世华夏的C9高校和海对面的藤校,算是一个顶尖的大学组织。

  不过与C9和藤校不同的是。

  七所帝大中有一所大学也可以被直接称之为“帝大”,那就是东京帝国大学。

  东京帝国大学是霓虹全国的最高学府,校内的学生直接被尊称为帝大生,连服装都和其他大学生有所区别。

  虽然‘帝大’这个称号因为带着很强的某些色彩,在霓虹战败后便被取消了。

  不过朝永振一郎等人还是习惯将东大称之为帝大,仿佛靠这称呼可以缅怀过去的某些时光。

  在两年前。

  海对面的另一位霓虹知名学者南部阳一郎提出了一个南部-戈德斯通模型,想以此来解释比原子更小的粒子世界。