从小镇学霸到首席科学家 第319章

作者:我思故我菜

结合历史出名人物的结论论证数学对于《周易》的发展,

显然是更有说服力的,所以周易才会把这一章放在第 一 章。

历朝历代的易学大家为了研究《周易》都孜孜不倦学习数学,

你们这些徒子徒孙敢说《周易》不需要强大的数学知识?

是不是要欺师灭祖?

周易这一招,直接把自己放在了最强的位置。

一旦这些人认识到数学对于《周易》的革新,那么《周易》到底是玄学还是数学,就不好说了。

接下里周易才开始叙述起来数学对于周易的发展,

从集合论与《周易》的关系说起。

周易开始说道:

“集合论是现代数学的基础,它不仅渗透到了数学的各个领域,也渗透到了许多自然科学和社会科学的领域。

德国数学家康托(G. tor,1845~1918)首先提出了集合的概念,他于1872~1897年间发表了一系列关于集合论的论文,奠定了集合论的基础。”

周易先解释了一下集合论的来历,也为接下来的做准备,只见周易继续说道:

“《系辞》说:‘方以类聚,物以群分。’

这里所说的‘类’与‘群’就与数学中的‘集合’概念非常接近。

易学研究中的许多命题,用集合论的语言来描述,就会更加方便、清楚和精确,有利于揭露问题的本质。

本章先介绍集合论的一些基本概念,然后说明易学问题与集合论中的一些基本概念的联系。”

随后周易把这一大章分成了四个小节来叙述。

...

“定义2.2.3:

设A_1,A_2,…,A_n。是n个集合,在A_1中取兀系α_1,在A_2中取元素α_2,…在A_n中取元素α_n,

作成一个有序的n元素组(a_1,a_2,…,a_n,),称为集合A_1,A_2,…,A_n的一个n元序组。A_1,A_2,…,A_n的所有n元序组所成的集合:…

D={(a_1,a_2,…,a_n)丨a_1∈A_1,a_2∈ A_2,…,a_n∈A_n }

称为集合A_1,A_2,…,A_n、的笛卡儿积,记作:

D=A_1xA_2x...xA_n。

特殊情况:若A_1=A_2=…=A_n=A时,则称D为A的n重笛卡儿积。

A_1xA_2x...xA_n的一个子集R,称为集合A_1,A_2,…,A_n的一个关系。

易学研究中的许多概念与集合的关系这一概念有密切的关系,

我们随便举一个例子,相信各位风水师必然是十分了解。

这里应该是例题2.2.1了。

古书《系辞》说:‘易有太极,是生两仪.两仪生四象,四象生八卦。’

又说:‘八卦成列,象在其中矣.因而重之,爻在其中矣。’

这些话有何哲学的义理,我们暂且不去管它。

但从集合论的观点看,易卦集可以看成另外一些集合的笛卡儿积。例如:

设A={1,0}是“两仪”的集合,作A的二重笛卡儿积:

B=AxA={(1,1),(1,0),(0,1),(0,0)}

如此,我们可以得到一个‘四象’的集合。

作A的三重笛卡儿积:

C=AxAxA={(1,1,1)(1,1,0)(1,0,1)(0,1,1)(1,0,0)(0,1,0)(0,0,1)(0,0,0)}

就会得到一个‘八卦’集合。

接着如果我们再作A的6重笛卡尔积,就可以得到易卦集。

这里的过程较为简单且单一,建议读者自信证明。”

周易留了一道作业,毕竟要做这个方向的鼻祖,不留作业怎么行呢?

让这群玄学带师体验一下数学系学生的痛苦。

证明题的痛苦。

周易喝了一口水,润了润喉咙,继续说道:

“如果从“四象”的集合B出发,作B的三重笛卡尔积,同样我们也能得到一个易卦集。

D=BxBxB。

同样,我们还可以从‘八卦’的集合C出发,作的笛卡尔积,也能得到一个易卦集,

这里由于时间有限,且步骤较为简单,留作一个习题。

紧接着,我们进行进一步分析,易卦集D还可以看做另外一些形式的笛卡尔积。

但是时间有限,且过程较为简单,留作一个习题给广大的易学爱好者。”

每一个章节,周易把《周易》或者其余古书之中的例子拿出来当成例题或者习题,

给这群易学爱好者,到时候这群人做不出来,还不得乖乖求自己。

又懂易学又懂数学的人,有多少呢?

就算这些人做出来了之后,还能有自己的权威?

都得来求自己。

周易都已经算好了,到时候整个玄学界大多数都得来求自己。

写完了第 二 章周易与集合论的关系,周易开始了写第三章 ,周易与布尔代数的关系。

每一大章之前,周易都要先写涉及到的数学知识与《周易》易学的关系,

不然是无法吸引这群孜孜不倦研究玄学的人的。

“布尔代数最初是在对逻辑思维法则的研究中出现的。

英国哲学家布尔(G.Boole,1815~1864)利用数学方法研究了集合与集合之间的关系的法则,他的研究工作后来发展成为一门独立的数学分支。…

随着电子技术的发展,布尔代数在自动化技术和电子计算机技术中得到了广泛的应用,

布尔向量是由0和1两个数码按一定顺序排列的数组,它被广泛地采用为描述具有若干因素,而每种因素都有两种对立状态的事物的数学模型。

我们将看到,易卦集的每一个卦都是一个布尔向量,而易卦集本身则是一个布尔代数。

因此,在本章中我要介绍有关布尔向量与布尔代数的初步知识,

介绍布尔向量与布尔代数与易学的关系,在介绍这两个概念之前,先介绍运算的概念。”

这一章,内容也不少,三个小节,周易再次留下了大量的习题。

不留下习题侮辱他们的智商,周易这口恶气是无法出的。

只有留下习题才能让他们知道什么是差距,周易灵光一闪,是不是有种更好的方法让他们求自己呢?

但是一时间想不出来,便开始了后面的内筒。

紧接着,周易开始了第 四 章的撰写。

周易与群论的关系。

首先还是写的群论与《周易》的联系。

“群是现代数学中一个极为重要的概念,它是19世纪法国青年数学家伽罗华(Galois)在研究5次以上代数方程的解法时,于1832年引进的。

群在数学的各个分支中,在许多理论科学和技术科学中都有十分重要的应用。

如相对论中的洛伦兹群,量子力学中的李群,都是现代科学中常识性的工具,今天群论发展成了一门艰深的数学分支。

我们将看到,在适当地定义了易卦集A的运算之后,易卦集A就成为一个交换群,它与模2加群同构。

因此,理所当然地可以把群的基本知识应用到易学研究中。

本章先介绍群的基本概念,然后证明易卦集A是一个群并讨论易卦群的一些性质及其在易学研究中的应用。”

周易继续说道:

“定理4.1.2:

设H是群G的非空子集,H是G的子群的充分必要条件是:对于H的任意两个元素a,b,都有ab^(-1)∈H。

证明过程这里略过,因为前面已经讲解了不少群论的数学基础,

相信以各位大师的水平,已然了然于心熟能生巧,这种简单的证明应该是轻而易举。

下面我们看几个例子。

例4.1.1:...。

例...

...

例4.1.3:

因为易卦群的元素a的逆元就是a本身,a^、=a。

所以,根据定理4.1.2,要验证易卦群A的某一子集H是否A的子群时,只要验证当a,b∈H时,ab^(-1)=ab∈H就可以了。

即只要验证H对A的乘法是封闭的就可以了。

据此,可以验证A的一些有趣的子群。

H_1={乾}={1,1,1,1,1,1 }是A的一阶子群(一个有限群有几个元素就叫做几阶群)。

H_2={乾,坤}={(1,1,1,1,1,1),(0,0,0,0,0,0)}是A的二阶子群。

A的四阶子群、A的八阶子群这里由于时间有限,留作习题供广大读者练习。

相信你们的智慧肯定是没有问题的哟。”…

周易说完第 四 章,又喝了一大口水,看了看时间,已经凌晨三点了。